Finite Volume Kolmogorov-Johnson-Mehl-Avrami Theory
نویسندگان
چکیده
منابع مشابه
Finite volume Kolmogorov-Johnson-Mehl-Avrami theory.
We study the Kolmogorov-Johnson-Mehl-Avrami theory of phase conversion in finite volumes. For the conversion time we find the relationship tau(con)=tau(nu)[1+f(d)(q)]. Here d is the space dimension, tau(nu) the nucleation time in the volume V, and f(d)(q) a scaling function. Its dimensionless argument is q=tau(ex)/tau(nu), where tau(ex) is an expansion time, defined to be proportional to the di...
متن کاملBeyond the constraints underlying Kolmogorov-Johnson-Mehl-Avrami theory related to the growth laws.
The theory of Kolmogorov-Johnson-Mehl-Avrami for phase transition kinetics is subjected to severe limitations concerning the functional form of the growth law. This paper is devoted to sidestepping this drawback through the use of the correlation function approach. Moreover, we put forward an easy-to-handle formula, written in terms of the experimentally accessible actual extended volume fracti...
متن کاملCell Dynamics Simulation of Kolmogorov-Johnson-Mehl-Avrami Kinetics of Phase Transformation
In this study, we use the cell dynamics method to test the validity of the Kormogorov-JohnsonMehl-Avrami (KJMA) theory of phase transformation. This cell dynamics method is similar to the well-known phase-field model, but it is a more simple and efficient numerical method for studying various scenarios of phase transformation in a unified manner. We find that the cell dynamics method reproduces...
متن کاملNucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model.
Motivated by a recent application of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model to the study of DNA replication, we consider the one-dimensional (1D) version of this model. We generalize previous work to the case where the nucleation rate is an arbitrary function I (t) and obtain analytical results for the time-dependent distributions of various quantities (such as the island distribution)...
متن کاملCell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization
The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the KolmogorovJohnson-Mehl-Avrami model. We have not imposed restrictions on the time dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2008
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.100.165702